數據挖掘通過預測未來趨勢及行為,做出前攝的、基于知識的決策。數據挖掘的目標是從數據庫中發現隱含的、有意義的知識,主要有以下五類功能。 1、自動預測趨勢和行為 數據挖掘自動在大型數據庫中尋找預測性信息,以往需要進行大量手工分析的問題如今可以迅速
數據挖掘通過預測未來趨勢及行為,做出前攝的、基于知識的決策。數據挖掘的目標是從數據庫中發現隱含的、有意義的知識,主要有以下五類功能。
1、自動預測趨勢和行為
數據挖掘自動在大型數據庫中尋找預測性信息,以往需要進行大量手工分析的問題如今可以迅速直接由數據本身得出結論。一個典型的例子是市場預測問題,數據挖掘使用過去有關促銷的數據來尋找未來投資中回報最大的用戶,其它可預測的問題包括預報破產以及認定對指定事件最可能作出反應的群體。
2、關聯分析
數據關聯是數據庫中存在的一類重要的可被發現的知識。若兩個或多個變量的取值之間存在某種規律性,就稱為關聯。關聯可分為簡單關聯、時序關聯、因果關聯。關聯分析的目的是找出數據庫中隱藏的關聯網。有時并不知道數據庫中數據的關聯函數,即使知道也是不確定的,因此關聯分析生成的規則帶有可信度。
3、聚類
數據庫中的記錄可被化分為一系列有意義的子集,即聚類。聚類增強了人們對客觀現實的認識,是概念描述和偏差分析的先決條件。聚類技術主要包括傳統的模式識別方法和數學分類學。80年代初,Mchalski提出了概念聚類技術牞其要點是,在劃分對象時不僅考慮對象之間的距離,還要求劃分出的類具有某種內涵描述,從而避免了傳統技術的某些片面性。
4、概念描述
概念描述就是對某類對象的內涵進行描述,并概括這類對象的有關特征。概念描述分為特征性描述和區別性描述,前者描述某類對象的共同特征,后者描述不同類對象之間的區別。生成一個類的特征性描述只涉及該類對象中所有對象的共性。生成區別性描述的方法很多,如決策樹方法、遺傳算法等。
5、偏差檢測
數據庫中的數據常有一些異常記錄,從數據庫中檢測這些偏差很有意義。偏差包括很多潛在的知識,如分類中的反常實例、不滿足規則的特例、觀測結果與模型預測值的偏差、量值隨時間的變化等。偏差檢測的基本方法是,尋找觀測結果與參照值之間有意義的差別。 數據挖掘與傳統分析方法的區別
數據挖掘與傳統的數據分析(如查詢、報表、聯機應用分析)的本質區別是數據挖掘是在沒有明確假設的前提下去挖掘信息、發現知識.數據挖掘所得到的信息應具有先未知,有效和可實用三個特征.
先前未知的信息是指該信息是預先未曾預料到的,既數據挖掘是要發現那些不能靠直覺發現的信息或知識,甚至是違背直覺的信息或知識,挖掘出的信息越是出乎意料,就可能越有價值.在商業應用中最典型的例子就是一家連鎖店通過數據挖掘發現了小孩尿布和啤酒之間有著驚人的聯系。
聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com