基本配置:
Anaconda 3 4.2.0(python3.5)
注意:
1、代碼存放至全英文目錄下;
2、電腦管家之類的安全軟件暫時關閉(因為發布出來的exe文件屬于可執行文件,電腦管家可能會認為發布出來的文件為病毒,自動刪除)
具體操作步驟如下:
1、寫好的python代碼,存放至全英文的目錄下:
import keras from keras.models import Sequential import numpy as np import pandas as pd from keras.layers import Dense import random import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data from tkinter import filedialog import tkinter.messagebox #這個是消息框,對話框的關鍵 file_path = filedialog.askdirectory() mnist = input_data.read_data_sets(file_path, validation_size=0) #隨機挑選其中一個手寫數字并畫圖 num = random.randint(1, len(mnist.train.images)) img = mnist.train.images[num] plt.imshow(img.reshape((28, 28)), cmap='Greys_r') plt.show() x_train = mnist.train.images y_train = mnist.train.labels x_test = mnist.test.images y_test = mnist.test.labels #reshaping the x_train, y_train, x_test and y_test to conform to MLP input and output dimensions x_train = np.reshape(x_train, (x_train.shape[0], -1)) x_test = np.reshape(x_test, (x_test.shape[0], -1)) y_train = pd.get_dummies(y_train) y_test = pd.get_dummies(y_test) #performing one-hot encoding on target variables for train and test y_train=np.array(y_train) y_test=np.array(y_test) #defining model with one input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer [10 #neurons] model=Sequential() model.add(Dense(784, input_dim=784, activation='relu')) keras.layers.core.Dropout(rate=0.4) model.add(Dense(10,input_dim=784,activation='softmax')) # compiling model using adam optimiser and accuracy as metric model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy']) # fitting model and performing validation model.fit(x_train, y_train, epochs=20, batch_size=200, validation_data=(x_test, y_test)) y_test1 = pd.DataFrame(model.predict(x_test, batch_size=200)) y_pre = y_test1.idxmax(axis = 1) result = pd.DataFrame({'test': y_test, 'pre': y_pre}) tkinter.messagebox.showinfo('Message', 'Completed!')
2、通過命令行,按照pyinstaller
pip install pyinstaller
3、命令行打包文件
先切換路徑至python代碼所在目錄,執行語句:
pyinstaller -F -w xxx.py
4、等待打包完成,會生成一個build文件夾和一個dist文件夾,exe可執行文件就在dist文件夾里,如果程序引用有資源,則要把資源文件放在這個exe正確的相對目錄下。
5、運行exe文件。
有時運行文件會出錯,此時需要拷貝下圖所示的文件夾至exe文件所在目錄
運行成功!
聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com